REGULAR ARTICLE

Frank Jensen

On the accuracy of numerical Hartree–Fock energies

Received: 30 September 2004 / Accepted: 1 October 2004 / Published online: 28 January 2005 © Springer-Verlag 2005

Abstract It is demonstrated that numerical Hartree–Fock (HF) energies reported in the literature in some cases have errors in the milliHartree range. The main cause of these errors is due to the use of too small a value for the 'practical infinity' parameter in the finite difference method for generating the results. By systematically investigating the convergence with respect to the computational parameters, HF energies accurate to at least 1 microHartree are generated for 42 diatomic systems containing first and second row elements, encompassing both cationic, neutral and anionic systems.

1 Introduction

The prediction of molecular stabilities by first-principle electronic structure methods is a subject that has attracted much attention over the last decade. The theoretical framework is conceptually simple: determine the minimum energy geometry, estimate the infinite-correlation infinite-basis-set limit for the electronic energy, and add vibrational zero-point energies and finite temperature corrections to give molecular heat of formation, which can be directly related to experimental results.A brute force approach for the second step, estimating the infinite-correlation infinite-basis-set limit, is not feasible, and composite methods are often used instead, as exemplified by the CBS-n [1], G_n [2], W_n [3] and focal point [4] methods. The computationally difficult part in these methods is estimating the correlation energy, but extrapolations [5] based on the correlation-consistent basis sets [6] or the use of explicitly correlated wave functions [7] have made a large step towards solving this problem. The basis set convergence of the Hartree–Fock (HF) energy is significantly faster than the correlation energy, and the HF basis set error is often assumed to be negligible, but as the effort towards higher accuracy continues, this error at some point must also be addressed.

F. Jensen

For atoms and diatomic systems, the limiting HF energy can be obtained by solving the integro-differential equations by finite difference or finite elements methods [8], and these results provide an absolute reference against which the results from finite basis sets can be evaluated. We have recently proposed a hierarchy of polarization-consistent basis sets [9,10], which, although optimized for density functional methods, should also be suitable for estimating the HF basis set limit. In connection with this work, we have in several cases obtained energies by (large) basis set calculations that were significantly different or even lower than the limiting HF energies reported in the literature, casting doubt on the accuracy of these results. In the present paper, we examine the cause of these discrepancies, and report HF energies for a selection of diatomic systems composed of first and second row elements, which should be accurate to at least 1 microHartree.

2 Results and discussion

All calculations have been done using the *2dhf* program [11], which solves the integro-differential HF equations by a finite difference method [8]. The orbital densities are evaluated on a grid in the transformed prolate spheroidal coordinates ν and μ used for representing the radial wave function, while the angular part is solved analytically. The method in addition employs a 'practical infinity' distance parameter (R_{∞}) for estimating the asymptotic behavior in the μ coordinate. The accuracy of a finite difference HF calculation is thus determined by four parameters: the grid sizes for the ν and μ coordinates, the value for R_{∞} and the convergence criteria for terminating the iterative procedure. If the increment between grid points in the ν and μ coordinates is chosen to be equal, the number of independent parameters is reduced to three, and this has been employed in the present case. A constant grid spacing determined by the number of ν grid points has as the consequence that the number of μ grid points increases with R_{∞} , as reflected in Tables 1, 2 and 3. The convergence criterion has in all cases been set to 10−12, which is sufficient

Department of Chemistry, University of Southern Denmark, 5230 Odense, Denmark E-mail: frj@doii.dk

System	Grid	R_{∞}	HF energy
$^1CH^+$	169×193	30	-37.9099113^a
$R = 2.137$ au	169×229	40	-37.9099112
	175×325	200	-37.9099112
	217×403	200	-37.9099112
${}^{3}CH^{-}$	169×229	40	-38.2933200
$R = 2.20$ au	175×325	200	-38.2933200
	217×403	200	–38.2933200
3NH	81×105		$-54.978429b$
$R = 1.9614$ au	169×235	40	-54.9784239
	175×331	200	–54.9784239
	217×409	200	-54.9784239
1 OH ⁻	211×211	45	-75.4188033^a
$R = 1.781$ au	169×241	40	–75.4188031
	175×337	200	–75.4188031
	217×415	200	-75.4188031
1 FH	81×161		-100.07082 ^c
$R = 1.7328$ au	169×193	30	-100.0708028 ^a
	169×253	60	-100.0708025 ^d
	169×241	40	-100.0708025
	175×337	200	-100.0708025
	217×421	200	-100.0708025
1C_2			
			-75.406565° -75.4065652
$R = 2.358$ au	169×223	40	
	175×319	200	-75.4065652
	217×397	200	–75.4065652
${}^{2}CN$	319×415	40	-92.2251341 ^f
$R = 1.1718 \text{ Å}$	169×229	40	-92.2251382
	175×325	200	-92.2251382
	217×403	200	-92.2251382
${}^{1}CN^{-}$	211×211	50	-92.3489506^a
$R = 2.214$ au	169×229	40	-92.3489505
	175×325	200	-92.3489505
	217×403	200	-92.3489506
1N_2	57×105		$-108.99381c$
$R = 2.068$ au	229×229	25	-108.9938257 ^g
	169×193	30	-108.9938260 ª
	169×229	40	-108.9938256
	175×325	200	–108.9938256
	217×409	200	-108.9938256
$11NO+$	169×193	30	-128.9780516^a
$R = 2.007$ au	169×235	40	-128.9780515
	175×331	200	–128.9780515
	217×409	200	-128.9780515
$1 NO^-$	169×223	40	-129.2801373
$R = 2.36$ au	175×319	200	-129.2801743
	175×331	250	–129.2801744
	175×343	300	-129.2801745
	217×427	300	-129.2801745
${}^{1}CO$	81×113		$-112.79095c$
$R = 2.132$ au	169×193	25	-112.790906 g
	169×253	60	$-112.7909072d$
	169×229	40	-112.7909072
	175×325		-112.7909072
		200	

Table 1 Convergence of the HF energy as a function of the grid size and R_{∞} parameter for systems composed of first row elements. Grid is
the number of grid points in the u and u coordinates respectively.

Table 1 (Contd.)

function of the v grid size and the R_{∞} parameter, and the last entry in each case should be within ~ 0.2 microHartree of the limiting value. It should be noted that the energy does not vary monotonic with the R_{∞} parameter. As a check of the accuracy of the final results, we have also estimated the HF limit by extrapolation of the results using the aug-pc-2, -3 and -4 basis sets, and these energies in each case agree with the numerical results to with a few tenths of a microHartree.

For the first row systems in Table 1, it is clear that a typical R_{∞} value of 40 au is sufficient for species like C₂ and N_2 , but inadequate for system like O_2 and F_2 , where a cutoff value of \sim 300 au is required for converging the results to a microHartree accuracy. We note that several literature values deviate by several tenths of a microHartree relative to the converged results. Furthermore, the employed R_{∞} value

to ensure convergence to at least ~ 0.02 microHartree for the present systems.

Tables 1, 2 and 3 list HF energies for 42 diatomic species composed of first and second row elements having wave functions of \sum symmetry. The total energy is given as a

Table 2 Convergence of the HF energy as a function of the grid size and R_{∞} parameter for systems composed of first and second row elements. Grid is the number of grid points in the ν and μ coordinates,

	Table 2 (Contd.)
--	------------------

^aRef. [12] ^bRef. [18]

 ${}^cR = 2.9006$ au. The corresponding converged value at this geometry is -435.3623913 d Ref. [19]

^eRef. [20]

and convergence criterion for terminating the iterative procedure is often not given, making it difficult to reproduce the reported values. For systems involving second row elements (Tables 2 and 3), the cutoff value must in some cases be even larger, and a significantly larger grid is also required in order to converge the results to within 1 microHartree. For some of the systems (SiN and P_2), the converged results deviate from the literature value by several milliHartrees.

A priori, it might have been expected that anions with loosely bound electrons would require larger values for R_{∞} in order to obtain converged results. The results in Tables 1, 2 and 3, however, only show a weakly trend in this direction. The R_{∞} value required for systems like F_2 and Cl_2 is already so large that it also suffices for the corresponding anion. Cations are not expected to have requirements different from the neutral species, and only a few have been included for comparison with literature values.

Table 3 Convergence of the HF energy as a function of the grid size and R_{∞} parameter for systems composed of second row elements. Grid is the number of grid points in the ν and μ coordinates, respectively

Grid	R_{∞}	HF energy
121×137	30	-686.516707 ^a
		-686.5162620
175×295	200	-686.5162806
175×307	250	-686.5162807
175×319	300	-686.5162808
259×475	300	-686.5162842
277×505	300	-686.5162842
61×61		$-681.508b$
169×199	40	-681.5000151
175×295	200	-681.5002505
175×331	350	-681.5002523
175×337	400	-681.5002523
259×499	400	-681.5002552
295×571	400	-681.5002553
169×199	40	-738.3396168
175×295	200	-738.3397021
175×319	300	-738.3397027
175×325	350	-738.3397026
259×481	350	-738.3397073
295×553	350	-738.3397074
169×199	40	-795.0911928
175×295	200	-795.0915518
175×319	300	-795.0915540
175×325	350	-795.0915541
259×481	350	-795.0915589
295×553	350	-795.0915590
169×193	40	-857.1042706
175×289	200	-857.1044078
175×331	400	-857.1044093
175×337	450	-857.1044093
	400	-857.1044184
295×559	400	-857.1044186
169×199	40	-919.0083635
175×295	200	-919.0089219
175×325	350	-919.0089254
175×331	400	-919.0089255
259×493	400	-919.0089343
295×565	400	-919.0089345
169×181	40	-919.0785465
175×277	200	-919.0795182
175×319	400	-919.0795280
175×325	450	-919.0795279
259×469	400	-919.0795631
277×505	400	-919.0795635
295×535	400	-919.0795637
	169×199 259×487	40

 b Ref. [18]

3 Summary

Numerical Hartree–Fock energies with an accuracy of at least 1μ Hartree are reported for 42 diatomic species composed of first and second row elements. It is shown that literature values in some cases are in error by several microHartrees for first row systems and by several milliHartrees for second row systems.

190 F. Jensen

Acknowledgements This work was supported by grants from the Danish Center for Scientific Computation and the Danish Natural Science Research Council.

References

- 1. Montgomery JA Jr, Ochterski JW, Petersson GA (1994) J Chem Phys 101:5900
- 2. (a) Curtiss, LA, Raghavachari K, Redfern PC, RassolovV, Pople JA (1998) J Chem Phys 109:7764; (b) Curtiss A, Redfern PC, Raghavachari K, Pople JA (2002) Chem Phys Lett 359:390
- 3. Boese DA, Oren M, Atasoylu O, Martin JML, Kallay G, Gauss J (2004) J Chem Phys 120:4129
- 4. Schuurman MS, Muir SR, Allen WD, Schaefer III HF (2004) J Chem Phys 120:11586
- 5. Halkier A, Helgaker T, Jorgensen P, Klopper W, Koch H, Olsen J, Wilson AK (1998) Chem Phys Lett 286:243
- 6. (a) Dunning TH Jr (1989) J Chem Phys 90:1007; (b) Peterson KA, Dunning TH Jr (2002) J Chem Phys 117:10548
- 7. (a) Noga J, Valiron P, Klopper W (2001) J Chem Phys 115:2022; (b) Noga J, Klopper W (2003) Chem Phys Chem 4:32
- 8. (a) Kobus J (1997) Adv Quant Chem 28:1; (b) McCullough EA Jr (1998) Encyclopedia of Comput Chem 3:1941
- 9. (a) Jensen F (2001) J Chem Phys 115:9113; (b) Jensen F (2002) J Chem Phys 116:3502
- 10. (a) Jensen F (2002) J Chem Phys 116:7372; (b) Jensen F (2002) J Chem Phys 117:9234; (c) Jensen F (2003) J Chem Phys 118:2459; (d) Jensen F, Helgaker T (2004) J Chem Phys 121:3462
- 11. Kobus J, Laaksonen L, Sundholm D (1996) Comp Phys Commun 98:346
- 12. Roy AK, Thakkar AJ (2002) Chem Phys Lett 362:428
- 13. Laaksonen L, Müller-Plathe F, Diercksen GHF (1988) J Chem Phys 89:4903
- 14. Sundholm D, Pyykkö P, Laaksonen L (1985) Mol Phys 56:1411
- 15. Halkier A, Helgaker T, Jørgensen P, Klopper W, Olsen J (1999) Chem Phys Lett 302:437
- 16. Kobus J, Moncrieff D, Wilson S (1999) Mol Phys 96:1559
- 17. (a) Moncrieff D, Wilson S (1993) Chem Phys Lett 209:423; (b) Kobus J (1993) Chem Phys Lett 202:7; (c) Moncrieff D, Kobus J, Wilson S (1995) J Phys B At Mol Opt Phys 28:4555
- 18. Pyykkö P, Diercksen GHF, Müller-Plathe F, Laaksonen L (1987) Chem Phys Lett 134:575
- 19. Kobus J, Moncrieff D, Wilson S (1994) J Phys B At Mol Opt Phys 27:2867
- 20. Müller-Plathe F, Laaksonen L (1989) Chem Phys Lett 160:175